Dynamical R Matrices of Elliptic Quantum Groups and Connection Matrices for the q-KZ Equations

نویسنده

  • Hitoshi KONNO
چکیده

For any affine Lie algebra g, we show that any finite dimensional representation of the universal dynamical R matrix R(λ) of the elliptic quantum group Bq,λ(g) coincides with a corresponding connection matrix for the solutions of the q-KZ equation associated with Uq(g). This provides a general connection between Bq,λ(g) and the elliptic face (IRF or SOS) models. In particular, we construct vector representations of R(λ) for g = A n , B (1) n , C (1) n , D (1) n , and show that they coincide with the face weights derived by Jimbo, Miwa and Okado. We hence confirm the conjecture by Frenkel and Reshetikhin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Dynamical R-Matrices from the Monodromy of the q-Knizhnik-Zamolodchikov Equations for the Standard Representation of Uq(s̃ln+1)

In 1992, in the pioneering work [FR92], Frenkel and Reshetikhin generalized the notion of conformal blocks to the q-deformed case, and proposed a q-deformed version of the KnizhnikZamolodchikov equations – the so called qKZ equations, which are no longer differential but rather q-difference equations. Furthermore, they calculated the connection (= q-monodromy) of these equations in a particular...

متن کامل

On highest weight modules over elliptic quantum groups

The purpose of this note is to define and construct highest weight modules for Felder’s elliptic quantum groups. This is done by using exchange matrices for intertwining operators between modules over quantum affine algebras. A similar problem for the elliptic quantum group corresponding to Belavin’s R-matrix was posed in [7]. This problem, as well as its analogue for Felder’s R-matrix was solv...

متن کامل

Connection Problems for Quantum Affine KZ Equations and Integrable Lattice Models

Cherednik attached to an affineHecke algebramodule a compatible systemof difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations. In the case of a principal series module, we construct a basis of power series solutions of the quantum affine KZ equations. Relating the bases for different asymptotic sectors gives rise to a Weyl group cocycle, which we compute explicitly ...

متن کامل

Monodromy of Solutions of the Elliptic Quantum Knizhnik-zamolodchikov-bernard Difference Equations

The elliptic quantum Knizhnik–Zamolodchikov–Bernard (qKZB) difference equations associated to the elliptic quantum group Eτ,η(sl2) is a system of difference equations with values in a tensor product of representations of the quantum group and defined in terms of the elliptic R-matrices associated with pairs of representations of the quantum group. In this paper we solve the qKZB equations in te...

متن کامل

Quantum Knizhnik-zamolodchikov Equations and Holomorphic Vector Bundles

Introduction In 1984 Knizhnik and Zamolodchikov [KZ] studied the matrix elements of intertwining operators between certain representations of affine Lie algebras and found that they satisfy a holonomic system of differential equations which are now called the Knizhnik-Zamolodchikov (KZ) equations. It turned out that the KZ equations (and hence, representation theory of affine Lie algebras) are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006